Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zheng Fan, ${ }^{\text {a }}$ Shang Shan, ${ }^{\text {a }}{ }^{*}$ Wei-Xiao Hu ${ }^{\text {a }}$ and Duan-Jun Xu ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Chemical and Materials Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China

Correspondence e-mail:
shanshang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.127$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Chloroacetophenone 2,4-dinitrophenylhydrazone

Crystals of the title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}_{4}$, were obtained from a condensation reaction of m-chloroacetophenone and 2,4-dinitrophenylhydrazine. The two benzene rings of the title molecule have a dihedral angle of $16.17(6)^{\circ}$. Within the dinitrophenyl moiety, the distances of 1.422 (3) and 1.415 (3) \AA for the $\mathrm{C}-\mathrm{C}$ bonds close to the imine group are appreciably longer than the average distance of 1.376 (3) \AA for other aromatic $\mathrm{C}-\mathrm{C}$ bonds in the same benzene ring. The overlapped arrangement of chlorophenyl rings of neighbouring molecules shows the existence of a $\pi-\pi$ stacking interaction.

Comment

As some phenylhydrazone derivatives show potential applications in the biochemistry field (Okabe et al., 1993), phenylhydrazone has attracted our attention recently. A series of phenylhydrazone derivatives have been prepared in our laboratory. We present here the crystal structure of the title compound, (I), to compare with those reported previously for related compounds (Shan et al., 2002; Shan et al., 2003).

(I)

The molecular structure of (I) is shown in Fig. 1. Atoms N3 and N4 are displaced on opposite sides from the weighted least-squares plane through the C 1 benzene ring by 0.042 (2) and 0.040 (2) \AA, respectively. Of the two nitro groups, one is coplanar with the C 1 benzene ring, but the other has an 8.1 (4) ${ }^{\circ}$ dihedral angle. The C9 benzene ring mean plane is tilted with respect to the C 1 benzene ring, the dihedral angle being 16.17 (6) ${ }^{\circ}$. Thus the C8 methyl group deviates from the C 9 benzene ring plane by 0.235 (5) \AA. This configuration is different from the coplanar configuration found in acetophenone 2,4-dinitrophenylhydrazone (Shan et al., 2002).

The $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 1-\mathrm{C} 6$ bonds close to the imine group are appreciably longer than other $\mathrm{C}-\mathrm{C}$ bonds in the same benzene ring (Table 1). This agrees with the situation found in 2,4-dinitrophenylhydrazone derivatives reported previously

Received 12 May 2004 Accepted 24 May 2004 Online 29 May 2004

Figure 1
The molecular structure of (I), with 40% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.

Figure 2
A molecular packing diagram. Dashed lines indicate weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. [Symmetry code: (i) $-x, y-\frac{1}{2}, \frac{1}{2}-z$.]
(Ohba, 1996; Naidu et al., 1996; Borwick et al., 1997; Bolte \& Dill, 1998; Shan et al., 2002).

The $\mathrm{N} 4=\mathrm{C} 7$ distance of 1.290 (3) \AA is typical of a double bond. The C9 and C1 benzene rings lie on opposite sides of the $\mathrm{N} 4=\mathrm{C} 7$ double bond; the methyl group and imine N3-H3 bond are on the same side of the $\mathrm{N} 4=\mathrm{C} 7$ bond. The methyl H atoms were placed in calculated positions and then the torsion angle was refined to fit the electron density. The present methyl conformation is very different from that calculated by SXGRAPH (Farrugia, 1999) (N4-C7-C8-H8A = 38 ${ }^{\circ}$, C9$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 B=22^{\circ}, \mathrm{H} 3 \cdots \mathrm{H} 8 A=1.95 \AA$ and $\mathrm{H} 14 \cdots \mathrm{H} 8 B=$ $2.09 \AA$). These values show that the methyl conformation better minimizes the steric hindrance between the methyl group and the C 9 benzene ring, and between the methyl group and the $\mathrm{N} 3-\mathrm{H} 3$ bond.

Figure 3
A diagram showing $\pi-\pi$ stacking between neighbouring benzene rings. [Symmetry code: (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$.]

With the aid of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, neighbouring molecules are linked to each other to form supramolecular chains along the crystallographic b axis, as shown in Fig. 2. The $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 1^{\mathrm{i}}$ [symmetry code: (i) $-x,-\frac{1}{2}+y$, $\frac{1}{2}-z$] hydrogen bond generates a $C(7)$ graph-set chain (Etter et al., 1990). Intramolecular weak hydrogen bonds involving the H atoms on the C 1 benzene ring ($\mathrm{H} 3 A, \mathrm{H} 5$ and H6; Table 2) may have some influence on the molecular conformation.

The partially overlapped arrangement of C 9 and $\mathrm{C} 9{ }^{\mathrm{ii}}$ benzene rings [symmetry code (ii): $x, \frac{1}{2}-y, \frac{1}{2}+z$] is illustrated in Fig. 3. The rings are nearly parallel, with an interplanar dihedral angle of only $0.20(7)^{\circ}$. A centroid separation of 3.793 (3) \AA, an interplanar spacing of 3.495 (2) and a centroid offset of 1.474 (10) \AA suggest the existence of $\pi-\pi$ stacking between them.

Experimental

2,4-Dinitrophenylhydrazine ($0.40 \mathrm{~g}, 2 \mathrm{mmol}$) was dissolved in ethanol $(10 \mathrm{ml})$, and then $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $(98 \%, 0.5 \mathrm{ml})$ was added slowly with stirring. The solution was heated at 333 K for several minutes until the solution cleared. m-Chloroacetophenone $(0.31 \mathrm{~g}, 2 \mathrm{mmol})$ was added dropwise with continuous stirring, and then the mixture was kept at 333 K for 30 min . When the solution had cooled to room temperature, fine orange crystals appeared. The crystals were separated from the solution and washed with cold water three times. Recrystallization was performed twice with acetone-diethyl ether (4:1).

Crystal data

[^0]$D_{x}=1.518 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 10397
\quad reflections
$\theta=2.8-27.0^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Prism, orange
$0.38 \times 0.22 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID	$R_{\text {int }}=0.038$
\quad diffractometer	$\theta_{\max }=27.5^{\circ}$
ω scans	$h=-17 \rightarrow 17$
13167 measured reflections	$k=-19 \rightarrow 19$
3349 independent reflections	$l=-9 \rightarrow 9$

3350 independent rellions
2250 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0602 P)^{2}\right.$ $+0.2883 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.30 \mathrm{e}^{-3}$
included in the final cycles of refinement in a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atoms). Methyl H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.96 \AA$, and the torsion angle was refined to fit the electron density $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC \& Rigaku Corporation, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the Zhejiang Provincial Natural Science Foundation of China (M203027). The authors thank Dr. Jian-Ming Gu for assistance in data collection.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bolte, M. \& Dill, M. (1998). Acta Cryst. C54, IUC9800065.
Borwick, S. J., Howard, J. A. K., Lehmann, C. W. \& O'Hagan, D. (1997). Acta Cryst. C53, 124-126.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Naidu, S. M., Krishnaiah, M., Sivakumar, K. \& Sharma, R. P. (1996). Acta Cryst. C52, 1054-1056.
Ohba, S. (1996). Acta Cryst. C52, 2118-2119.
Okabe, N., Nakamura, T. \& Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.
Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Akishima, Tokyo, Japan.
Rigaku/MSC \& Rigaku Corporation. (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku, Akishima, Tokyo, Japan.
Shan, S., Xu, D., Hung, C., Wu, J. \& Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.
Shan, S., Xu, D., Wu, J. \& Chiang, M. Y. (2002). Acta Cryst. E58, o1333-o1335. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}_{4}$
 $M_{r}=334.72$
 Monoclinic, $P 2_{\mathrm{d}} / c$
 $a=13.221$ (1) A
 $b=15.1466$ (11) \AA
 $c=7.5827$ (6) \AA
 $\beta=105.324$ (2) ${ }^{\circ}$
 $V=1464.47(19) \AA^{3}$
 $Z=4$

